Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 145(2)2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352015

RESUMO

The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression.


Assuntos
Proteínas Aviárias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neurogênese/fisiologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Apoptose , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Sequência de Bases , Sítios de Ligação/genética , Proteína Morfogenética Óssea 4/metabolismo , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Embrião de Galinha , Feminino , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Neurogênese/genética , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Regulação para Cima
2.
Dev Biol ; 388(1): 35-47, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24512687

RESUMO

Signaling pathways and transcription factors are crucial regulators of vertebrate neurogenesis, exerting their function in a spatial and temporal manner. Despite recent advances in our understanding of the molecular regulation of embryonic neurogenesis, little is known regarding how different signaling pathways interact to tightly regulate this process during the development of neuroepithelia. To address this, we have investigated the events lying upstream and downstream of a key neurogenic factor, the Cut-like homeodomain transcription factor-2 (Cux2), during embryonic neurogenesis in chick and mouse. By using the olfactory epithelium as a model for neurogenesis we have analyzed mouse embryos deficient in Cux2, as well as chick embryos exposed to Cux2 silencing (si) RNA or a Cux2 over-expression construct. We provide evidence that enhanced BMP activity increases Cux2 expression and suppresses olfactory neurogenesis in the chick olfactory epithelium. In addition, our results show that up-regulation of Cux2, either BMP-induced or ectopically over-expressed, reduce Delta1 expression and suppress proliferation. Interestingly, the loss of Cux2 activity, using mutant mice or siRNA in chick, also diminishes neurogenesis, Notch activity and cell proliferation in the olfactory epithelium. Our results suggest that controlled low levels of Cux2 activity are necessary for proper Notch signaling, maintenance of the proliferative pool and ongoing neurogenesis in the olfactory epithelium. Thus, we demonstrate a novel conserved mechanism in vertebrates in which levels of Cux2 activity play an important role for ongoing neurogenesis in the olfactory epithelium.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Neurogênese/fisiologia , Mucosa Olfatória/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Proliferação de Células , Embrião de Galinha , Inativação Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo
3.
Dev Neurobiol ; 74(6): 643-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24376126

RESUMO

N-myc belongs to the myc proto-oncogene family, which is involved in numerous cellular processes such as proliferation, growth, apoptosis, and differentiation. Conditional deletion of N-myc in the mouse nervous system disrupted brain development, indicating that N-myc plays an essential role during neural development. How the development of the olfactory epithelium and neurogenesis within are affected by the loss of N-myc has, however, not been determined. To address these issues, we examined an N-myc(Foxg1Cre) conditional mouse line, in which N-myc is depleted in the olfactory epithelium. First changes in N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a complete lack of Hes5-positive progenitor cells, decreased proliferation, and neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination with smaller neurons might explain the morphological defects in the N-myc depleted olfactory structures. Moreover, our results suggest an important role for N-myc in regulating ongoing neurogenesis, in part by maintaining the Hes5-positive progenitor pool. In summary, our results provide evidence that N-myc deficiency in the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative consequences at structural and cellular levels.


Assuntos
Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Neurogênese/genética , Mucosa Olfatória/embriologia , Proteínas Proto-Oncogênicas c-myc/deficiência , Fatores Etários , Animais , Embrião de Mamíferos , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Mucosa Olfatória/citologia , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/enzimologia , Proteínas Proto-Oncogênicas c-myc/genética , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia
4.
Biol Sex Differ ; 4(1): 18, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119315

RESUMO

BACKGROUND: The male brain is putatively organised early in development by testosterone, with the sexually dimorphic nucleus of the medial preoptic area (SDN) a main exemplifier of this. However, pubescent neurogenesis occurs in the rat SDN, and the immature testes secrete anti-Müllerian hormone (AMH) as well as testosterone. We have therefore re-examined the development of the murine SDN to determine whether it is influenced by AMH and/or whether the number of calbindin-positive (calbindin+ve) neurons in it changes after pre-pubescent development. METHODS: In mice, the SDN nucleus is defined by calbindin+ve neurons (CALB-SDN). The number and size of the neurons in the CALB-SDN of male and female AMH null mutant (Amh-/-) mice and their wild-type littermates (Amh+/+) were studied using stereological techniques. Groups of mice were examined immediately before the onset of puberty (20 days postnatal) and at adulthood (129-147 days old). RESULTS: The wild-type pre-pubertal male mice had 47% more calbindin+ve neurons in the CALB-SDN than their female wild-type littermates. This sex difference was entirely absent in Amh-/- mice. In adults, the extent of sexual dimorphism almost doubled due to a net reduction in the number and size of calbindin+ve neurons in females and a net increase in neuron number in males. These changes occurred to a similar extent in the Amh-/- and Amh+/+ mice. Consequently, the number of calbindin+ve neurons in Amh-/- adult male mice was intermediate between Amh+/+ males and Amh+/+ females. The sex difference in the size of the neurons was predominantly generated by a female-specific atrophy after 20 days, independent of AMH. CONCLUSIONS: The establishment of dimorphic cell number in the CALB-SDN of mice is biphasic, with each phase being subject to different regulation. The second phase of dimorphism is not dependent on the first phase having occurred as it was present in the Amh-/- male mice that have female-like numbers of calbindin+ve neurons at 20 days. These observations extend emerging evidence that the organisation of highly dimorphic neuronal networks changes during puberty or afterwards. They also raise the possibility that cellular events attributed to the imprinting effects of testosterone are mediated by AMH.

5.
Horm Behav ; 64(4): 605-10, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24012942

RESUMO

Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p < 0.0001), and absent in mice that lacked a gonadal hormone, AMH. After 20 days, the number of BNSTp neurons increased in the male mice by 25% (p < 0.0001) and decreased in female mice by 15% (p = 0.0012), independent of AMH. Adult male AMH-deficient mice had a normal preference for sniffing female pheromones (soiled bedding), but exhibited a relative disinterest in both male and female pheromones. This suggests that male mice require AMH to undergo normal social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias.


Assuntos
Hormônio Antimülleriano/fisiologia , Núcleos Septais/crescimento & desenvolvimento , Testículo/metabolismo , Animais , Tamanho Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Tamanho do Órgão/genética , Núcleos Septais/citologia , Caracteres Sexuais , Diferenciação Sexual/genética , Maturidade Sexual/genética , Comportamento Social
6.
Neuropsychopharmacology ; 34(3): 775-85, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18800067

RESUMO

Stress and anxiety are mainly regulated by amygdala and hypothalamic circuitries involving several neurotransmitter systems and providing physiological responses to peripheral organs via the hypothalamic-pituitary-adrenal axis and other pathways. The role of endogenous opioid peptides in this process is largely unknown. Here we show for the first time that anxiolytic parameters of explorative behavior in mice lacking prodynorphin were increased 2-4-fold in the open field, the elevated plus maze and the light-dark test. Consistent with this, treatment of wild-type mice with selective kappa-opioid receptor antagonists GNTI or norbinaltorphimine showed the same effects. Furthermore, treatment of prodynorphin knockout animals with U-50488H, a selective kappa-opioid receptor agonist, fully reversed their anxiolytic phenotype. These behavioral data are supported by an approximal 30% reduction in corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus and central amygdala and an accompanying 30-40% decrease in corticosterone serum levels in prodynorphin knockout mice. Although stress-induced increases in corticosterone levels were attenuated in prodynorphin knockout mice, they were associated with minor increases in depression-like behavior in the tail suspension and forced swim tests. Taken together, our data suggest a pronounced impact of endogenous prodynorphin-derived peptides on anxiety, but not stress coping ability and that these effects are mediated via kappa-opioid receptors. The delay in the behavioral response to kappa-opioid receptor agonists and antagonist treatment suggests an indirect control level for the action of dynorphin, probably by modulating the expression of CRH or neuropeptide Y, and subsequently influencing behavior.


Assuntos
Ansiedade/metabolismo , Corticosterona , Encefalinas/fisiologia , Neuropeptídeos/metabolismo , Precursores de Proteínas/fisiologia , Receptores Opioides kappa , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/fisiopatologia , Tronco Encefálico/metabolismo , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Dinorfinas/fisiologia , Encefalinas/genética , Encefalinas/metabolismo , Comportamento Exploratório , Feminino , Guanidinas , Hipotálamo/metabolismo , Masculino , Aprendizagem em Labirinto , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/metabolismo , Morfinanos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/fisiologia , Neuropeptídeos/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Núcleos da Rafe/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Estresse Psicológico/fisiopatologia
7.
Brain ; 130(Pt 4): 1017-28, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17347252

RESUMO

Neuropsychiatric disorders are one of the main challenges of human medicine with epilepsy being one of the most common serious disorders of the brain. Increasing evidence suggest neuropeptides, particularly the opioids, play an important role in epilepsy. However, little is known about the mechanisms of the endogenous opioid system in epileptogenesis and epilepsy. Therefore, we investigated the role of endogenous prodynorphin-derived peptides in epileptogenesis, acute seizure behaviour and epilepsy in prodynorphin-deficient mice. Compared with wild-type littermates, prodynorphin knockout mice displayed a significantly reduced seizure threshold as assessed by tail-vein infusion of the GABA(A) antagonist pentylenetetrazole. This phenotype could be entirely rescued by the kappa receptor-specific agonist U-50488, but not by the mu receptor-specific agonist DAMGO. The delta-specific agonist SNC80 decreased seizure threshold in both genotypes, wild-type and knockout. Pre-treatment with the kappa selective antagonist GNTI completely blocked the rescue effect of U-50488. Consistent with the reduced seizure threshold, prodynorphin knockout mice showed faster seizure onset and a prolonged time of seizure activity after intracisternal injection of kainic acid. Three weeks after local injection of kainic acid into the stratum radiatum CA1 of the dorsal hippocampus, prodynorphin knockout mice displayed an increased extent of granule cell layer dispersion and neuronal loss along the rostrocaudal axis of the ipsi- and partially also of the contralateral hippocampus. In the classical pentylenetetrazole kindling model, dynorphin-deficient mice showed significantly faster kindling progression with six out of eight animals displaying clonic seizures, while none of the nine wild-types exceeded rating 3 (forelimb clonus). Taken together, our data strongly support a critical role for dynorphin in the regulation of hippocampal excitability, indicating an anticonvulsant role of kappa opioid receptors, thereby providing a potential target for antiepileptic drugs.


Assuntos
Encefalinas/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Precursores de Proteínas/fisiologia , Receptores Opioides kappa/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos/farmacologia , Animais , Benzamidas/farmacologia , Contagem de Células , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas/genética , Encefalinas/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Guanidinas , Hipocampo/metabolismo , Excitação Neurológica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfinanos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Degeneração Neural/metabolismo , Piperazinas/farmacologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Transmissão Sináptica/fisiologia , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 101(34): 12742-7, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15314215

RESUMO

Neuropeptide Y (NPY) is pivotal in the coordinated regulation of food intake, growth, and reproduction, ensuring that procreation and growth occur only when food is abundant and allowing for energy conservation when food is scant. Although emotional and behavioral responses from the higher brain are known to be involved in all of these functions, understanding of the coordinated regulation of emotion/behavior and physiological functions is lacking. Here, we show that the NPY system plays a central role in this process because ablation of the Y1 receptor gene leads to a strong increase in territorial aggressive behavior. After exposure to the resident-intruder test, expression of c-fos mRNA in Y1-knockout mice is significantly increased in the medial amygdala, consistent with the activation of centers known to be important in regulating aggressive behavior. Expression of the serotonin [5-hydroxytryptamine (5-HT)] synthesis enzyme tryptophan hydroxylase is significantly reduced in Y1-deficient mice. Importantly, treatment with a 5-HT-1A agonist, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide, abolished the aggressive behavior in Y1-knockout mice. These results suggest that NPY acting through Y1 receptors regulates the 5-HT system, thereby coordinately linking physiological survival mechanisms such as food intake with enabling territorial aggressive behavior.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Neuropeptídeo Y/genética , Agonistas do Receptor de Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo
9.
J Cell Physiol ; 198(2): 295-301, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14603531

RESUMO

Cyclooxygenase-2 (COX-2) over-expression is critically involved in tumor formation. Intracellular pH (pHi) has been shown to be alkaline in cancer cells, and to be an important trigger for cell proliferation. This study therefore analyzed the relationship between pHi and COX-2 expression. HRT-18 and Caco-2 cells cultured in medium with bicarbonate maintained a pHi of approximately 7.6, which is higher than that of non-neoplastic cells. Cells grown in bicarbonate-free medium with a pH at 6.8 showed a reduction in pHi to approximately 7.0. Importantly, reduction of pHi resulted in a complete inhibition of COX-2 mRNA and protein expression. When cells were grown in bicarbonate-supplemented medium at pH 6.8, pHi maintained at approximately 7.6 and COX-2 expression was not inhibited. Additionally, analysis utilizing protein synthesis inhibitor cycloheximide demonstrated that pHi mediated inhibition of COX-2 mRNA expression requires de novo protein synthesis of regulatory protein(s). These data strongly suggest that an alkaline pHi is an important trigger for constitutive COX-2 expression. Defining pHi-mediated mechanisms that govern the constitutive COX-2 expression may help in developing new strategies to block COX-2 over-expression in cancer cells.


Assuntos
Neoplasias do Colo/enzimologia , Líquido Intracelular/química , Isoenzimas/biossíntese , Prostaglandina-Endoperóxido Sintases/biossíntese , Células CACO-2 , Cicloeximida/farmacologia , Ciclo-Oxigenase 2 , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Immunoblotting , Isoenzimas/efeitos dos fármacos , Proteínas de Membrana , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...